
Indefinitely Scalable Computing = Artificial Life Engineering

David H. Ackley1, Trent R. Small1

1University of New Mexico, Albuquerque, NM 87131
ackley@cs.unm.edu, tsmall1@unm.edu

Abstract

The traditional CPU/RAM computer architecture is increas-
ingly unscalable, presenting a challenge for the industry—
and is too fragile to be securable even at its current scale,
presenting a challenge for society as well. This paper ar-
gues that new architectures and computational models, de-
signed around software-based artificial life, can offer radical
solutions to both problems. The challenge for the soft alife
research community is to harness the dynamics of life and
complexity in service of robust, scalable computations—and
in many ways, we can keep doing what we are doing, if we
use indefinitely scalable computational models to do so. This
paper reviews the argument for robustness in scalability, de-
livers that challenge to the soft alife community, and summa-
rizes recent progress in architecture and program design for
indefinitely scalable computing via artificial life engineering.

The future of software artificial life
Focusing particularly on models that span traditionally sep-
arate representational levels, the ‘soft alife’ (Bedau, 2003)
research community has used digital computers to investi-
gate everything from artificial physics and chemistry to ar-
tificial biology and ecology. Collectively, the community
has sharpened the understanding of life-like systems, deep-
ened the understanding of their range, and offered illuminat-
ing examples of their complexities. Alife models and tech-
niques have found applications in contexts like film produc-
tion (Bajec and Heppner, 2009; Reynolds, 1987) and video
games (Grand, 2003, e.g.).

The productivity of the community has been admirable,
particularly given its modest size, but we believe a far greater
destiny for it lies in store: Software-based artificial life is
to be the architectural foundation of truly scalable and ro-
bust digital computing. Because, fundamentally, the mecha-
nisms required for robust scalability—to switch energy and
perform work, to adapt to local conditions or maintain in-
variants despite them, to increase parallel processing to suit
available resources—are precisely what life does.

Future computer programs will be less like frozen en-
tities chained to the static memory locations where they
were loaded, and more like yeasty clusters of digital cells,

moving and growing, healing and reproducing, cooperat-
ing and competing for computing resources on a vast dig-
ital landscape—that will itself be growing and changing, as
we build and upgrade it even while it’s operating. Any pro-
gram instance will be finite, but the substrate architecture it-
self will be indefinitely scalable, defined as supporting open-
ended computational growth without requiring substantial
re-engineering (Ackley and Cannon, 2011). An indefinitely
scalable machine will ultimately provide an aggregate com-
putational power to dwarf our current visions for even high-
performance computing.

To get there from here, we need to reveal, remove, and
reimplement design elements that block indefinite scalabil-
ity. Traditional models of computation, as well as important
areas of soft alife research, embody several such assump-
tions. We need to raise awareness of the costs of such de-
signs, and advocate for existing alternatives, as well as de-
velop new ones.

To get there from here, ultimately a significant societal
investment will be required, to back an expanding software
artificial life community as it fleshes out a body of scientific
and engineering knowledge around robust artificial life for
computer architecture. There is much to be invented and dis-
covered, but the payoff will be immense: The development
of a tough and savvy computing base of great capability—
not a system promising freedom from all risk or fault, but a
system for which risk management and fault tolerance have
always been inescapable parts of life.

To get there from here, we also need to get going.
Recently we have presented a framework called bespoke
physics to ground the effort (Ackley, 2013a); in addition,
we have made the case to communities focusing on oper-
ating systems (Ackley and Cannon, 2011), spatial comput-
ing (Ackley et al., 2013), and general computing (Ackley,
2013b). Here our purpose is to sound a vigorous call to arms
and place a challenge before the soft alife community, and to
provide an update on our own recent progress in indefinitely
scalable computing via artificial life engineering.

In the rest of this section we expand on the twin
challenges—scalability and security—now facing tradi-

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch098

tional computer architecture. Section ‘Beyond serial deter-
minism’ proposes an alternative and grounds it briefly in his-
tory, then Section ‘Challenges to the soft alife community’
highlights common architectural assumptions—such as syn-
chronous updating and perfect reliability—that can yield
evocative models in the small, but lead to engineering dead
ends in the large. Section ‘Programming the Movable Feast
Machine’ reports progress on our tool-building efforts for in-
definitely scalable architecture, along with first benchmarks
on (finitely) parallel hardware, and then finally, Section ‘A
call to action’ touches on our next steps and appeals to the
soft artificial life community for help.

Computer architecture at a crossroads
The rise of digital computing over the last seventy years
has been a stunning feat of technological research and de-
velopment, with revolutionary economic and societal im-
pacts. But recently the growth rate of traditional serial
deterministic computing has plateaued, as further clock
speed increases consumed exorbitant resources for dimin-
ishing returns. Now ‘multicore’ machines exchange strict
serial determinism for a modicum of parallelism, creating
some uncertainty about the exact sequencing of operations,
while preserving overall input-output determinism for well-
formed programs. But even there, the requirement for cache
coherence—so the architecture presents a unified Random
Access Memory to all processors—is demanding increas-
ingly heroic engineering (Xu et al., 2011, e.g.) even when
only considering scalability within a single chip.

At the same time, given recent high-profile computer
penetrations and security failures (Harding, 2014; Perlroth,
2013, and many others reported and not), there is under-
appreciated irony in the computing industry’s determined
preservation of CPU and RAM architectures, which—by
fundamental design—are all but impossible to keep secure.
Because programs and data can be placed anywhere in
RAM, storage location provides precious little clue to the
identity or provenance of its content. And central processing
means that the same tiny spots of silicon run everything—
whether code of the long-trusted servant or the drive-by
scum of the internet.

Undeniably, serial deterministic computing with CPU and
RAM has great strengths: It is flexible and efficient, and
its behavior can be predicted accurately by chaining simple
logical inferences—which programmers do routinely as they
imagine execution of their code. But that predictability ex-
ists only so long as hardware and software and user all act
as anticipated. If anything amiss is detected, fail-stop error
handling—that is, halting the machine—is the traditional re-
sponse. It’s game over; no further predictions are required.
Fail-stop is efficient to implement and tolerable assuming
the only unexpected events are rare faults due to random
cosmic rays or other blind physical processes, resulting in
nothing more than the occasional system crash without last-

ing damage or too much lost work.
However, this only applies to small and isolated systems.

By contrast, as the high-performance computing (HPC)
community contemplates the move to exascale computers,
the cost of using fail-stop to preserve program determinism
is increasingly seen as untenable (Cappello et al., 2009).
And for today’s networked CPU/RAM computers, the un-
expected is typically neither rare nor random. As app in-
stalls and updates bring ever more software bugs, and ever
more value at risk attracts ever more malicious actors, the
only safe prediction is that the first flaw loses the machine
to an attacker’s control.1 A horror movie nightmare, where
hearing one senseless incantation causes immediate and en-
during loss of volition, is quite literally true in our digital
environments.

We are now building millions of computers per week
according to that staggeringly fragile blueprint. Hard-
ware switches are packed millions to the square millime-
ter and controlled by a software house of cards—a rickety
skyscraper of cards, lashed together by a single thread of
execution. It’s a devil’s bargain that we have accepted, it
seems, because its efficiency and flexibility strengths were
immediate while its security and scalability weaknesses
have overwhelmed us gradually. Now we’re so deeply in-
vested in the architecture that we blame only the imperfect
tenants, never the doomed buildings: We blame the pro-
grammers with their buggy code and the harried managers
shipping it, and the miscreants with their malware and the
clueless users clicking it. We have accepted this devil’s bar-
gain, it seems, because we thought there was no fundamental
alternative, or that any alternative would involve unafford-
able exotic hardware and space shuttle-grade software.

Beyond serial determinism
There is another approach to building digital computers, a
direction suggested decades ago but still mostly unexplored
today, that leads to robustness instead of fragility. It is built
not on static correctness but on dynamic stability, aimed not
at efficient completion but at continuous creation, acting not
via local changes to a frozen ocean but via collective sta-
bilization of restless seas. It is neither free from faults nor
paralyzed by them, but born to them, expecting and accomo-
dating them—even exploiting them.

The proposal is to extract large quantities of robust, use-
ful computation from vast ecosystems of engineered, soft-
ware artificial life, running on a bulk digital hardware sub-
strate consisting of interchangeable commodity processing
tiles suitably (re)architected for the purpose.

This may sound like outrageous science fiction, but—at
least in the architecture discussed below—it depends only
on conventional electronics manufacturing and requires no

1Or, possibly, the second flaw, if there’s an active ‘user’ vs ‘ad-
ministrator’ distinction.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

breakthroughs in materials science or unconventional com-
puting media. Or it may sound outrageously inefficient, but
for truly scalable computation, esteem for efficiency must be
tempered with respect for robustness. There will be unde-
tected faults in memory and processing, and hardware fail-
ures too big to mask, and substantial resources going online
and off without notice. The system as a whole simply will
not have a global start or halt or reset state.

To prosper in such systems, large and long-lived compu-
tations will employ strategic redundancy throughout. They
will have capabilities for environmental and internal moni-
toring, as well as for regulation, repair, migration, and op-
portunistic replication for robustness and performance.

In short: Large computations will become artificial life.
In fundamental ways, the soft alife research community

has been exploring in miniature the sorts of issues that the
computing industry is destined to encounter in the large—
indeed, that it is starting to encounter now. Soft alife should
own that connection, and if we embrace indefinite scalability
in our models, we can.

The proposal is frankly ambitious, but at the same time,
in broad strokes it is far from new. Over sixty years
ago, von Neumann (1951) predicted that serial determin-
istic computing—his namesake approach—was destined to
change:

Thus the logic of automata will differ from the present system
of formal logic in two relevant aspects:

1. The actual length of “chains of reasoning,” that is, of the
chains of operations, will have to be considered.

2. The operations of logic . . . will all have to be treated by
procedures which allow exceptions (malfunctions) with
low but non-zero probabilities.

In other words, von Neumann argued, both the open-
endedness of the ‘serial’ and the perfection of the ‘deter-
minism’ would have to go. He used a reliability argument
and explicitly contrasted fail-stop with the ‘hide and heal’
error handling of living systems.

At the time, von Neumann guessed it unlikely that com-
puters would grow beyond perhaps tens of thousands of
“switching organs”—we would say “logic gates”—using se-
rial determinism. But today’s microprocessors—still deter-
ministic, if no longer entirely serial—often sport upwards
of a billion gates, putting von Neumann’s prediction in the
wrong by some six orders of magnitude. Advances in mate-
rials, manufacturing, and electronics design have increased
gate reliability and reduced costs immensely, and judicious
touches of hardware redundancy where needed—for exam-
ple in error-correcting memories—have, so far, preserved
determinism as seen by the application programmer. But we
believe application determinism in the large is a lost cause,
as suggested by the HPC reference cited above, and it is high
time to begin fleshing out alternatives.

The economics and risks of programmability
The universally programmable machine is certainly among
the greatest theoretical ideas in all of computer science.
Within their physical limits, manufactured digital computers
are, in some sense, the most flexible machines possible; that
is their glory—and their Achille’s heel. There is an inherent
coupling between inflexibility and security: If some machine
simply cannot do something, as a matter of physics, no mode
of failure or successful attack can change that.

More flexibility means more accessible actions and
thus more risk. For trustworthy performance on
high-consequence tasks—automobile engine control, for
example—first principles would favor a rigid, special-
purpose machine. But the automotive industry—like many
others—is moving just the other way, despite the risks, be-
cause the economics of programmability is a tidal wave.

A multibillion dollar investment in a new chip fabrica-
tion factory today can be attractive because programmabil-
ity allows one machine design to be used for myriads of
purposes—that can be chosen after the hardware is built or
sold. Any architecture hoping to supplant CPU and RAM
will have to be significantly programmable, or able to gen-
erate high volume unit sales some other way.

Though today it is mostly a gleam in the eye, an indef-
initely scalable computing architecture, that combines use-
ful programmability with life-like savvy toughness, stands
to offer both, and that is our goal.

The Movable Feast Machine
The specific architecture we are developing—called the
Movable Feast Machine (MFM)—is designed to combine
indefinite scalability with robust programmability, and be
implementable in mature and cost-effective technologies.
Here we describe it only briefly, to ground the discussion in a
concrete example, and highlight the challenges those design
goals can present for traditional soft alife modeling. Ackley
(2013a) offers additional discussion of indefinite scalability,
while details of MFM operations are described in (Ackley
et al., 2013).

Consider Figure 1, the canonical MFM architecture
overview diagram. To a soft alifer’s eye, the MFM will most
likely read as an artificial chemistry on a cellular automaton,
and that is a fair assessment, although the details of both are
unusual. The computational state is embodied by ‘atoms’,
which are fixed-length bitvectors existing one per site like a
many-valued CA symbol.

An MFM program consists of a finite set of ‘elements’
and a finite ‘Garden of Eden’ state. An element definition
is analogous to a class definition in an object-oriented sys-
tem, with the atoms representing object instances. The el-
ement definition specifies the interpretation of the bitvector
of its atoms—its ‘data members’—and provides a ‘behavior’
method specifying how type of atom reacts with its neigh-
borhood when an asynchronous state transition (an ‘event

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

Tiles
(memory+

processing+local communications)

mfa 1;
import Dockable;
element Sample(bond prv,
 bond nxt,
 sbond dock,
 sbond tmp)
 = 0x123
{
 /* Behavior goes here
 as loop-free code, able
 to read and write only
 inside the event window
 */
}

Element definitions
(compiled to non-volatile
memory, all tiles)

Movable Feast
Machine

Event window
 (may span tiles)

Type: 0x123
Bond0: (-2,-1)
Bond1: (3,1)
Sbond0: (0,0)
Sbond1: (-1,1)

Active atom
(type-specific atomic update+

bond-aware diffusion) Sites & atoms
(volatile memory)

H
ar

dw
ar

e
So

ftw
ar

e

Figure 1: MFM architectural overview.

window’ in Figure 1) occurs.
The MFM is unusual as a CA for being asynchronous and

employing a relatively huge neighborhood, and its chem-
istry is entirely discrete, with its reaction rules defined not
by transition tables or simple mathematical expressions, but
a full-fledged though stylized programming language (orig-
inally based on Java, now C++). To enhance robustness,
the MFM employs a strict Harvard architecture, placing ex-
ecutable element code in an entirely separate address space
from the atoms, so nothing that happens during atomic level
computations can affect the ‘laws of physics’ determined by
the elements. A separate communications channel, inacces-
sible to the atoms, is presumed if it is necessary to perform
‘magic’—to change or update the compiled element codes
(see Ackley et al. (2013) for more).

Challenges to the soft alife community
Several of the MFM architectural decisions—such as the
asynchronous updates, and the limited state per atom—are
undeniably aggravating for programmers, compared to the
heady freedom of serial determinism on CPU and RAM,
so it is important to highlight the costs of succumbing to
the latter, and the benefits of soldiering on with the MFM.
Software-based artificial life, broadly speaking, can be con-
structed and construed either as ‘weak alife’—as life-like
computations intended for pedagogy or entertainment or sci-
entific modeling—or as ‘strong alife’—as forms of living

technology (Bedau et al., 2010) deployable to advantage in
computer systems other than just the experimenter’s.

On the one hand, ‘soft weak alife’ can employ whatever
architectural assumptions its designer wishes, since the ul-
timate worth of the computation depends only on proper-
ties of its output—being instructive, say, or enjoyable or
predictive—and not on the computation’s internal structures.
But on the other hand, once a computational model exists, it
is almost impossible to resist imagining it ‘writ large’: as
a scaled-out system capable of actually doing something.
In other words, ‘soft weak alife’ contains an implicit af-
fordance to be interpreted as ‘soft strong alife’—and that’s
when its architectural assumptions become crucial.

The game of Life (Gardner, 1970), as likely the best-
known instance of a synchronous, faultless cellular au-
tomata, provides a good example of the issues and risks.
Explicitly positioned as a game, both fun and instructive,
its alluringly simple rules and complex resulting behaviors
have inspired generations and spawned an entire subculture
of obsessed aficionados. And that is vastly more impact than
most simple models can claim, but despite its name and its
mathematical and metaphorical appeal, the game of Life is a
poor architecture for soft strong alife. Concrete evidence for
this can be seen in a recent masterful analysis of the game of
Life glider, in which Beer (2014) reports that, of the 224 pos-
sible states of the sites surrounding a glider, an occurence of
any of more than 99.44% of those states destroys the glider.
Now that’s fragile.

Robust systems and actual living systems have structural
degeneracy—meaning multiple possible states that can per-
form the same function, allowing them to ride out many en-
vironmental perturbations. As alife researchers, we should
want to emphasize architectures and models offering mas-
sive degeneracy—and yet, as Beer (2014) notes dryly, “Of
course, the structural degeneracy of a glider is quite mild, but
this degeneracy can be astronomical in more complicated
entities.” But in such a synchronous, faultless, deterministic
model, everything is predictable in principle, so who needs
degeneracy? It’s inefficient! We could simulate a bigger
model instance if we ditched it! Our architectural assump-
tions shape our models, more often and more deeply than we
may recognize.

Here are five architectural properties—of which the first
three, at least, are common in soft alife—that are incompati-
ble with indefinite scalability, often for overlapping reasons:

1. Global synchronization. Architectures based on a global
clock, or presuming global simultaneous updating, are not
indefinitely scalable, requiring either globally flawless ex-
ecution, faster than light communication, or both. Note
the oft-rediscovered trick for overlaying a synchronous
CA atop an asynchronous one (Nakamura, 1974; Nehaniv,
2004) presumes perfect reliability—if there’s one ‘stuck’
asynchronous site anywhere, the entire synchronous uni-
verse grinds to a halt.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

2. Perfect reliability. Architectures based on globally flaw-
less execution are not indefinitely scalable, as discussed
earlier. Our soft alife models, ideally, should be self-
stabilizing (Dijkstra, 1974; Schneider, 1993), but at the
very least, some non-zero level of random bit corruptions
should be tolerable indefinitely.

3. Free communication. Architectures based on fixed or sub-
linear latency in global communications are not indefi-
nitely scalable. Physical machinery occupies space and
the speed of light is finite, so global communications la-
tency can be no better than linear in the machine diam-
eter. This also rules out tree-based logarithmic commu-
nications latencies, and, perhaps less obviously, any local
use of (finitely-old) global data—such as conditioning lo-
cal reproduction decisions on the current global popula-
tion size, for example.

4. Excess dimensionality. Architectures postulating more
than three scalable dimensions are not indefinitely scal-
able, though any number of finite additional dimensions
is implementable.

5. Periodic boundary conditions in three dimensions. Archi-
tectures postulating ‘wrap around’ edges in three scalable
dimensions are not indefinitely scalable. In general, edge
cases cannot be completely avoided—they can occur due
to localized hardware failures, for example—but periodic
boundary conditions can be tolerated in models with at
most two scalable dimensions.

Again, it is important to stress that by evaluating a soft
weak alife model for adequacy as a soft strong alife model,
we are going beyond what most designers are prepared to
claim for their models—so the blame for any shortcomings,
strictly speaking, is on us. But that is not a complete excuse
for the model designer, because fragile and unscalable soft
weak alife models can tend to mislead our intuitions about
the scope and complexity of the rules we should actually
be considering to make substantial progress. And funda-
mentally, if one seeks potential designs for soft strong alife,
where else should one turn?

There has been an asymmetry in the triumvirate of ‘hard’,
‘soft’, and ‘wet’ alife (Bedau, 2003). The hard alife
folk, working in robotics, are obviously constrained by the
physical—everything from backlash to friction to irrepro-
ducible results. The wet alife folk are likewise constrained
by the physical—everything from toxicity to contamination
to irreproducible results. Only the soft alife folk were appar-
ently unfettered, but our claim is that, in reality, they too are
constrained by the physical, and that indefinite scalability is
a suitably abstract but effective way to recognize that.

Programming the Movable Feast Machine
The MFM is an indefinitely scalable architecture designed
for research and exploration, and to be readily imple-
mentable on low-cost hardware. Our hope is that imple-

Figure 2: ‘Cells’ exchanging messages via double-bonded
self-healing wire. From (Ackley and Cannon, 2011).

Predicted event rate vs site position
10K avg instr/event, 2Mbps, P1 Atom, N=32, R=4

 0
 10

 20
 30xc 0

 10
 20

 30
yc

 600

 800

 1000

 1200

E
ve

nt
s/

se
c

(2
5

til
e

av
er

ag
e)

Figure 3: Estimated indefinitely scalable event rate by site,
from (Ackley et al., 2013). Compare to Figure 4.

Event rate vs site position
DReg and Res, P1 Atom, N=32, R=4

MFMv2.r269 on Intel Xeon E3-1245 @ 3.30GHz

 0
 10

 20
 30

xc 0
 10

 20
 30

yc

 90

 100

 110

 120

E
v
e
n
ts

/s
e
c

(a
v
e
ra

g
e
 o

v
e
r

3
x
3

 t
ile

 g
ri

d
)

Figure 4: Measured (non-scalable) average event rate by site
on DReg. Nine tile simulation running on a 4 core/8 hyper-
thread processor. Compare to Figure 3 and Figure 5.

mentors of artificial chemistries (Dittrich et al., 2001, is a
survey) as well as other alife researchers and interested pro-
grammers in general, ultimately, can be enticed to work with
it. For that to happen, we need to make it readily accessible
to all, and that is the goal of our current development work,

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

Event rate vs site position, 3x3 full grid; DReg and Res, P1 Atom, N=32, R=4
MFMv2.r269 on Intel Xeon E3-1245 @ 3.30GHz

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

xc

 0
 10

 20
 30

 40
 50

 60
 70 80

 90

yc

 50

 75

 100

 125

 150

E
v
e
n
ts

/s
e
c

(3
x
3

 t
ile

 g
ri

d
)

Figure 5: Measured event rates over all sites in a 3× 3 grid. Same simulation as in Figure 4.

 1

 2

 5

 10

 20

 0 2000 4000 6000 8000 10000

A
v
g
 s

o
rt

in
g
 e

rr
o
r

(b
u
ck

e
ts

)

AEPS

Demon Horde Sort accuracy versus time
on a 160x96 site grid organized

as 5x3 tiles or untiled

untiled
5x3 tiles

Figure 6: Average sorting accuracy of Demon Horde Sort in
a monolithic space vs a 5× 3 grid of tiles. See text.

which we describe briefly here.

An MFM simulator and operating system
Most MFM simulation results reported in Ackley et al.
(2013) and prior—such as the ‘communicating cells’ model
in Figure 2—were obtained with a Java simulator that acted
like one big tile. We are now developing a C++ ‘MFMv2’
codebase, aimed at using the same core event processing
code both in simulators running on traditional machines—
using one thread per simulated tile—and eventually, in the
operating system for actual indefinitely scalable hardware
tiles. With this approach, a model built on the finitely-
scalable threaded simulator will likely require only a re-
compilation to run very similarly on indefinitely scalable
hardware—and while in simulation, we have easy global
visibility into all tiles for debugging and data gathering.

To aid programmability, the MFM architecture employs
intertile locking to make single event execution effectively

serial deterministic even if the event window spans tiles.
The studies in Ackley et al. (2013) predicted such lock-
ing would depress event rates at the edges and corners of
tiles, as depicted in Figure 3. In our early experiments with
the new multithreaded simulator, we have indeed observed
those effects, as seen in Figure 4, which illustrates the aver-
age events per second at each site of a tile, averaging over a
3× 3 grid of tiles. On average, we observe that events hap-
pen about 30% more often in the central ‘hidden’ regions re-
quiring no communication with surrounding tiles, compared
to the edges and especially the corners. However, Figure 5
shows that this ‘average tile’ is a mixture of two very differ-
ent situations—central and edge—and the edge tiles actually
see significantly higher event rates due to decreased locking.

Such variability in event rate may seem positively debil-
itating, coming from traditional models in which we are
expected to orchestrate the motion of every bit, but indefi-
nite scalability requires the software as well as the hardware
to be robust. For example, the DReg physics used in the
benchmark above (and as a part of the ‘QBar’ simulation
below), causes random atoms to be deleted every so often,
so any computation sharing space with DReg must be ro-
bust to that. It is possible to consider mechanisms to level
the event rate across tile sites, but they will incur a possi-
bly significant performance penalty, and we may find that
this hardware-induced event rate variability is better taken
as just another factor to which the software stack will adapt.

For example, we have performed a number of studies on a
robust sorting algorithm we call the ‘Demon Horde Sort’, in
which Sorter atoms move Datum atoms across the grid
while sorting them vertically by value. This algorithm is
described in greater detail in Ackley et al. (2013), but its
reported behavior there was based on single-threaded simu-

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

(a) 0 AEPS: Garden of Eden (b) 2,000 AEPS: Structure construction

(c) 2,700 AEPS: Structure completion (d) 4,000 AEPS: Structure maintenance

Figure 7: Stages in building a large structure, showing recycling atoms (Dreg, grey), resource atoms (Res, brown), and
structure atoms (QBar) both immature (from white to blue) and mature (yellow). Assembly begins slowly (a), (b) but completes
rapidly (c) and is maintained indefinitely (d) as the system equilibrates. The tile structure is visible in the background (grey).

lations. Considering the wide variation of site event rates in
these tiles, compared to a single-threaded model, we won-
dered how much this would affect the Demon Horde’s per-
formance. Figure 6 shows early results.2

We ran two simulations of the same dimensions and to-
tal sites: One on a untiled grid, ‘untiled’, and another on a
grid of 5× 3 tiles, ‘tiled’. The untiled simulation sees a uni-
form average event rate at all sites, while the tiled simulation
experiences the variable event rates illustrated in Figure 4—
and yet there are no obvious differences in sorting accuracy
between them. Much more experimentation is needed, but
this does suggest it is possible to design useful computa-
tions despite significant variabilities in the neutral dynamics
of the architecture—the spontaneous underlying system be-
havior independent of any particular program.

Higher order structures
The MFM’s explicit programmability makes it relatively
easy to create a range of specific collective behaviors, even

2Note the buckets are somewhat coarser in this case compared
to prior reports, so the average bucket errors are not directly com-
parable across implementations.

when the resulting structures are much larger than one
atomic neighborhood (the event window in Figure 1). As
an example, Figure 7 displays screenshots from a simulation
that builds a four-sided structure of ‘QBar’ atoms, measur-
ing over 100 sites on a side, spread over 20 tiles. Simulated
time is measured in average events per site (AEPS).

The QBar atom uses bits of its atomic state to represent:

• The overall width (5 bits) and height (7 bits) of the ‘bar’
it is part of,

• Its xr (5 bits) and yr (7 bits) relative position in its bar,

• Its symmetry (2 bits) in terms of 90◦ bar rotations, and

• Its maturity represented as a 3 bit stochastic counter.

The QBar transition rule performs several actions, in-
cluding consistency checks involving neighboring QBar’s,
and seeking out available resources (Res atoms) to trans-
mute into further QBar’s, if a gap is found in the structure.
Also, QBar may decay itself back into a Res, if it finds
itself highly inconsistent with its neighborhood, and as a
special case, when a QBar atom matures in the maximum
position (i.e., when xr = width− 1, yr = height− 1, and

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

maturity = 7), it seeks to create a minimum position QBar
atom ‘around the corner’ using the next rotational symmetry.

The resulting QBar ‘box’ is not particularly useful on its
own; it is shown here as an illustration of the kinds of struc-
tures that are relatively easy to build in the MFM. Extensions
to QBar can be readily imagined, such as using the empty
sites in its deliberately porous structure to actively transport
other selected elements across the bars, generating distinct
inner and outer chemical environments. In general, as expe-
rience grows with the MFM, we hope to build up libraries of
elements and their components—quarks—to make bespoke
physics design and construction easier and more modular.

A call to action
A major goal of the MFMv2 second generation simulator is
to make exploring robust computations with the MFM—for
alifers and programmers at least—as painless as possible,
to help stimulate the growth of a community and a body of
science and engineering knowledge around indefinitely scal-
able computing via artificial life engineering.

As we finalize this paper for the proceedings, the simu-
lator is still under heavy development, but by the date of
the conference we are hoping to have a version 1.0 release,
complete with documentation, tutorials and Ubuntu pack-
aging so that installation can be as simple as apt-get
install mfmv2 from a public personal package archive.

But it is not necessary to use our software, or even the
MFM architecture itself, to contribute to the larger effort to
develop robust-first computing and flesh out alternatives to
traditional serial deterministic computing. The power of in-
definite scalability, if we define and refine it properly, is that
any indefinitely scalable architecture will be transformable
into any other of equal or greater scalable dimensionality, at
only plausible cost. Or, in particular, transformed into actual
hardware at potentially massive scales.

For too long, soft alife models have been separated from
each other by their unique laws of physics. But there can be
strength in unity. Join us.

Acknowledgments
This work was supported in part by a Google Faculty Re-
search Award, and in part by grant VSUNM201401 from
VanDyke Software, both to the first author. Lance R.
Williams, Thomas P. Jones, G. Matthew Fricke, and the
Robust-First Computing Group at UNM contributed valu-
able ideas and a place for them to grow.

References
Ackley, D. H. (2013a). Bespoke physics for living technology. Ar-

tificial Life, 19(3 4):347–364.

Ackley, D. H. (2013b). Beyond efficiency. Commun. ACM,
56(10):38–40. Author preprint: http://nm8.us/1.

Ackley, D. H. and Cannon, D. C. (2011). Pursue robust indefi-
nite scalability. In Proc. HotOS XIII, Napa Valley, California,
USA. USENIX Association.

Ackley, D. H., Cannon, D. C., and Williams, L. R. (2013). A mov-
able architecture for robust spatial computing. The Computer
Journal, 56(12):1450–1468.

Bajec, I. L. and Heppner, F. H. (2009). Organized flight in birds.
Animal Behaviour, 78(4):777 – 789.

Bedau, M. A. (2003). Artificial life: organization, adaptation and
complexity from the bottom up. Trends in Cognitive Sciences,
7(11):505 – 512.

Bedau, M. A., McCaskill, J. S., Packard, N. H., and Rasmussen,
S. (2010). Living technology: Exploiting life’s principles in
technology. Artificial Life, 16(1):89–97.

Beer, R. D. (2014). The cognitive domain of a glider in the game
of life. Artificial Life, 20(2):183–206.

Cappello, F., Geist, A., Gropp, B., Kal, L. V., Kramer, B., and Snir,
M. (2009). Toward exascale resilience. IJHPCA, 23(4):374–
388.

Dijkstra, E. W. (1974). Self-stabilizing systems in spite of dis-
tributed control. Commun. ACM, 17(11):643–644.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistries: A review. Artificial Life, 7:225–275.

Gardner, M. (1970). The fantastic combinations of John Conway’s
new solitaire game “life”. Scientific American, 223:120–123.

Grand, S. (2003). Creation: Life and How to Make It. Harvard
University Press.

Harding, L. (2014). The Snowden Files: The Inside Story of the
World’s Most Wanted Man. Vintage. Knopf Doubleday Pub-
lishing Group.

Nakamura, K. (1974). Asynchronous cellular automata and
their computational ability. Systems, Computers, Controls,
5(5):58–66.

Nehaniv, C. L. (2004). Asynchronous automata networks can emu-
late any synchronous automata network. IJAC, 14(5-6):719–
739.

Perlroth, N. (2013). Target struck in the cat-and-mouse game of
credit theft. The New York Times.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed
behavioral model. In Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87, pages 25–34, New York, NY, USA. ACM.

Schneider, M. (1993). Self-stabilization. ACM Comput. Surv.,
25(1):45–67.

von Neumann, J. (1951). The general and logical theory of au-
tomata. In Jeffress, L. A., editor, Cerebral Mechanisms in
Behaviour: the Hixon Symposium (1948). Wiley.

Xu, Y., Du, Y., Zhang, Y., and Yang, J. (2011). A composite and
scalable cache coherence protocol for large scale CMPs. In
Proceedings of the International Conference on Supercom-
puting, ICS ’11, pages 285–294, New York, NY, USA. ACM.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

