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Abstract

In the physics of the natural world, basic tasks of life, such as homeostasis and re-
production, are extremely complex operations, requiring the coordination of billions
of atoms even in simple cases. By contrast, artificial living organisms can be imple-
mented in computers using relatively few bits, and copying a data structure is trivial.
Of course, the physical overheads of the computers themselves are huge, but since their
programmability allows digital “laws of physics” to be tailored like a custom suit, de-
ploying living technology atop an engineered computational substrate might be as or
more effective than building directly on the natural laws of physics, for a substantial
range of desirable purposes. This paper suggests basic criteria and metrics for “bespoke
physics” computing architectures, describes one such architecture, and offers data and
illustrations of custom living technology competing to reproduce while collaborating
on an externally useful computation.

1 Living technology and big computing

In some ways, indeed, life is hard. Certainly, in the natural world, making a self-sustaining
and reproducing creature is a messy and complex affair. Even the tiny Pelagibacter ubique
bacterium [30], for example, known as one the smallest of free-living creatures, involves
hundreds of millions of atoms, and its reproduction involves intricate choreography, for over
a day, of that many more. Natural life is an amazing, obstinate process, but—at least from
the viewpoint of an atom, say—it isn’t easy.

In exploring life as it could be, artificial life researchers deploy technologies—from robotic
hardware, to pure software, to biochemical preparations—that implement the organisms and
operations of life in many ways, sometimes quite differently from traditional life as we know
it. The primary purpose of such research has often been scientific, but—as introduced and
discussed in [5]—there is also growing interest in living technology : engineered systems that
make essential use of life-like components or principles. A recent focus (see, e.g., many
of the papers in [31]) is “wet” living technology, which uses atoms and small molecules
as basic units and builds from there towards basic living mechanisms like metabolism and
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reproduction. Such efforts have tremendous potential because they build on the same low-
level, widely-available ingredients and conditions as natural life, and can deploy similar
structures and mechanisms for similar jobs—but by the same token, many aspects of their
design are prefigured by their relatively traditional atomic units and chemical interactions.

Choosing atoms, say, as the basic units for an approach to living technology is just one
possibility—as discussed for example by Pattee [29], it is ultimately a definitional question
how we categorize phenomena as “physical law” versus “initial condition.” Like nesting
virtual machines in computer science—one machine simulating another, which may be sim-
ulating a third, and so on—one theory’s initial condition can be another’s physical law. As a
practical matter, for basic units we can choose almost anything in reality that can be found
or fabricated in sufficient numbers, and manipulated as needed, for our living technology
to be productive. A simple-minded approach to viruses, for example, might treat complete
cells or complex cellular components as “atomic” entities. Similarly, adopting initial condi-
tions like “clean white sand, air, falling water, and sunlight” [32] makes scientific sense when
exploring the origins of natural life, but for system engineering all such decisions are for the
living technology designer to make, given the tasks and resources at hand.

Compared to low-level wet approaches, living technologies built on digital software and
hardware require extensive computing machinery before we can even begin to design—but
that looks increasingly reasonable given the proliferation of inexpensive computing devices in
our environment. Relatively low-cost processor and memory chips are now being produced by
the million, creating a potential “complexity sweet spot” for digital living technologies based
on such machinery. And building living technology atop digital hardware offers an extreme
level of freedom to the designer. General-purpose programmability allow bits and boolean
operations to combine in a staggering panoply of possible “atomic” units and “chemical”
mechanisms to underpin a living technology. Computer-based models of artificial chemistries
[13, is an early review] vary widely, in everything from their size and level of detail to their
spatial dimensionality and treatment of time. Such diversity in laws of digital physics is
understandable given the design freedom of the approach and the range of the scientific and
theoretical purposes of the models. At the same time, such variety makes it challenging to
compare models or have much confidence that results from one may apply in another.

My primary purpose in writing this paper is to highlight potential connections between
computer architecture and engineering on the one hand, and artificial life, artificial chem-
istry, and artificial physics on the other. Section 2 offers possible requirements and quality
principles or “metalaws” for custom laws of physics in computer systems, motivated pri-
marily by engineering concerns, and suggests some rough and ready metrics for comparing
approaches. Section 3 provides an overview for the artificial life community of our work
with the Movable Feast Machine, a “metalaw compliant” architecture for bespoke physics
processing. Section 4 relates this work to some existing research efforts, and finally, Section 5
offers a brief conclusion.

2 Bespoke physics as interface

In traditional scientific use, laws of physics are descriptive—representing more or less accu-
rate or predictive abstractions of reality—and, in effect, they are judged by their leverage:
the simplicity or cleanliness of the laws themselves versus the range of initial conditions over
which the laws make useful predictions. For engineering use, here our purpose is prescrip-
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tive: laws of physics as specifications for the structure and behavior of machinery. A law
like F = ma, for example, can be at once a scientific description of a wide range of physical
phenomena, and an engineering prescription for a computer game or physical simulation.

In computer and software engineering, an interface specification defines the legal interac-
tions between some system components. Like laws of physics, interface specification quality
derives largely from simplicity and clarity versus completeness and utility—which all vary
widely, depending on the scope and maturity of the interface, as well as the underlying
wisdom of its design. The Unix ‘yes’ program—which endlessly prints lines containing ‘y’
or another given string—fills only a small niche, but its interface specification is just a few
lines of text [28]. The ‘IA32/64 architecture’, by contrast—a widely-used interface between
computer hardware and software—is specified by a software developer’s manual [18] that,
currently, spans some 3,000 pages in seven volumes.

The vast gap between such a complex specification and the simple power of, say, New-
tonian mechanics mostly reflects different divisions of labor between ‘law’ and ‘initial condi-
tion’, as discussed earlier. The same physical laws describe basically all mechanical devices;
the additional details needed to describe any particular machine are relegated to the initial
conditions. By contrast, an IA32 machine remains distinctly a computer—though perhaps
operating only briefly or uselessly—no matter what the initial contents of its memory.

The very notion of a bespoke physics may seem a pointless contrivance, because any
bespoke-physics-plus-implementation can always be viewed as a single undifferentiated sys-
tem in the “real” laws of physics of the natural world. But the same is true of interfaces
in computing—any collection of interfaces-plus-implementations can also be viewed as a
single monolithic computation—and yet good interfaces are crucial to manage complexity
throughout hardware, software, and systems engineering.

At root, my goal for the concept of ‘bespoke physics’ is to pull the concepts of ‘interface
specifications’ and ‘laws of physics’ toward each other. Bespoke physics asks us to frame
laws of physics that are somewhat constrained and task-specific—as is typical for interface
specifications—while also defining computing interfaces and architectures that are simple
and indefinitely scalable—as is typical for laws of physics.

2.1 Definitions and design principles

In this section we use the key words ‘MUST’ and ‘SHOULD’ (similarly ’SHOULD NOT’)
as described in RFC2119 [7]—to introduce passages constituting requirements and strong
expectations, respectively, of a specification.1. Let a bespoke physics be comprised of a
definition of a basic unit, which may have any set of ascribed properties representable in
finite state, plus a finite set of dynamical laws determining how the basic units move and
interact. Depending on purpose, a basic unit might be akin to an atom or a subatomic
particle, or a molecule or a cell, or a billiard ball or a bit or a widget; ascribed properties
might include atomic number or charge, valence or cell type, solid or striped, or some wild
pastiche never before seen in one entity.

A bespoke physics, plus an initial condition—some arrangement of basic units—defines

1Applying a term like ‘should’ to the laws of physics seems utterly teleological and mystical—suggesting
they have a creator capable of purpose and expectation—but of course that is precisely what bespoke laws
of physics do have. And despite the lure of purely formal specifications, in practice, adopting an intentional
stance is often essential to the effective use of complex systems of interfaces.
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a computation. A computational system, in turn, is a physical realization or implementation
of a computation. And finally, a bespoke physics for computation can also be called a hosted
physics relative to such an implementation, which may also be called a host physics.

Those definitions are meant to be agnostic about whether the basic units and dynamical
laws are more or less “analog” or “digital” in character—but minding the complexity sweet
spot discussed above, this paper considers only implementations based on widely-available
digital circuitry. Note also that in a digital bespoke physics, a single bit may or may not
be a basic unit—some larger data structure involving multiple bits may be more useful.
For example, the basic units in the physics described in Section 3 have ascribed properties
specified by 64 bits each.

As in the scientific usage, for our engineering use also we wish to maximize the leverage
of our custom physics—on the one hand by keeping the laws as manageable and affordably
implementable as possible, while on the other hand ensuring their widest applicability to
possible initial conditions. To that end, first, there is the Implementability Require-
ment: A bespoke physics for a computational system MUST be implementable, somehow,
in conventional physical reality as we understand it. Such implementations—in principle or
preferably actual practice—provide one more or less quantitative basis for comparing the
capabilities and costs of different bespoke laws of physics, as discussed in Section 2.3.

Second, we offer four Quality Principles or metalaws, aimed at increasing the compact-
ness or usability of the laws themselves, or increasing the set of possible initial conditions,
or both:

1. Indefinite scalability : The laws themselves SHOULD NOT have internal restrictions
or limits; they SHOULD apply to arbitrary and arbitrarily large initial conditions—at
least in principle and for analysis, even if such initial conditions may not be practically
constructible.

2. Spatiotemporal isotropy at scale: There may be some fine structure or granularity to
the laws, but at least above some length and duration accessible to the artificial life
organisms, the laws SHOULD apply uniformly regardless of the specific position in
space or moment in time.

3. Limited causality : The laws SHOULD NOT (and arguably cannot) require globally
deterministic evolution from the initial conditions, but there SHOULD be generally
reliable causal regularities, at space and time scales locally exploitable by the artificial
life organisms.

4. Strong level isolation: It SHOULD be as difficult as possible to affect the bespoke
laws of physics from within the computation itself. Hardware designed to implement
just one bespoke physics would be perfect, but for economies of scale, or research and
development, programmable hardware may be used, meaning the bespoke physics can,
somehow, be modified without manufacturing, so this must be treated carefully.

In descriptive contexts, principle (1) usually goes without saying—at least until it is vio-
lated, as when classical mechanics breaks down around a black hole. In computer engi-
neering, though, the widespread use of techniques that are only finitely scalable—such as
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global synchronous clocking, fixed-width memory addressing, or globally unique network
addresses—mean that very few existing computing mechanisms don’t violate principle (1)
(see [2] for further discussion).

In his 1963 Nobel Lecture [37], Wigner discussed basic superprinciples that physical laws
should possess even to be recognizable as such—including invariance under euclidean geomet-
ric transformations and time displacements, which he called ‘Category (a) and (b) invariance
transformations’. Principle (2) is a rendering of that same intent, though weakened to add
engineering ‘wiggle room’ at the bottom.

Principle (3), similarly, is an explicit weakening of the notion of global determinism or
causality. Though physical and philosophical theories differ on the degree and nature of
determinism presumed to exist in reality, nearly all current computers are deterministic in
the sense that they are designed to produce exactly the same outputs given the same inputs,
with very high probability. This can ease debugging and logical analysis, but means any
randomness needed by the computation must be simulated.2 Furthermore, such determin-
ism is increasingly unaffordable as systems grow under principle (1), due to synchronization
costs and the need for large systems to handle errors and localized failures gracefully. Some
researchers [9] in high-performance computing, for example, discuss limited ways to move
beyond determinism in the move to exascale computing (machines performing 1018 opera-
tions per second). Principle (3) countenances that and even much more radical departures
from traditional computational determinism, but does ask—albeit rather informally—that
bespoke physics provide ‘enough’ stability and repeatability to make locally reliable compu-
tation possible.

Principle (4) also usually goes without saying; in the natural world, violations of it—
known as magic—are considered rare. Here it is an explicit quality principle, in large part,
to call out the dismal state of security and trustworthiness in computing today. It is said
one shouldn’t violate the laws of man while one can’t violate the laws of physics—but far too
often, programmed “laws” for computer security and privacy have proven merely the former
when we needed the latter. Principle (4) asks the computer architect and living technology
designer to recognize and manage the liabilities, and not just the benefits, of general-purpose
programmability.

2.2 Natural versus bespoke physics

A bespoke physics can call its basic unit an ‘atom’, but it’s unlikely that basic unit can or
will be implemented using a single physical atom. This paper focuses on using stored digital
bits to represent a basic unit, with the bit values specifying the unit’s ascribed properties. At
a minimum, therefore, one bespoke atom requires however many real atoms it takes to store
those bits. That hosting overhead—the number of host atoms per hosted atom, overall—is
the huge elephant in the bespoke physics room, compared to the direct ‘an atom is an atom’
physics of reality itself.

How bad does that ratio need to be? A MicroSD card, for example, weighing perhaps half
a gram, can today store 64GB; if we imagine our basic units are 64 bits each that amounts
to perhaps 10−10 grams per bespoke atom, compared to around 10−23 grams for say a carbon
atom. Thirteen orders of magnitude of hosting overhead goes well beyond the perhaps

2Computer designers are increasingly augmenting traditional deterministic machines with hardware de-
vices providing ‘true randomness’—or call it ‘external unpredictability’—primarily to facilitate encryption.
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billions of atoms tied up in a P. ubique, for example, and additional hosting resources are
needed—processors and program memory, for example—that only make it worse. At least
in the nearer term, hosting overheads are likely to be substantial, raising concerns about
cost-effective scalability. Half a century ago, Feynman [14] discussed the vast ‘room at the
bottom’—at the fine-grained end of natural physics—for increased information storage and
processing density. From within a bespoke physics, there is no explicit structure below the
level of its basic unit properties—although implementation details may be detectable by
the hosted physics, despite principle (4)—but Feynman’s arguments do suggest that clever
implementations might reduce hosting overhead significantly.

Even without such optimizations, though, there are at least two considerable benefits
to bespoke physics over natural physics. First and most important for present purposes, a
bespoke physics gains the same advantage held by any programmable machine over a special-
purpose one: Deferring functional commitment from manufacturing time to programming
time creates flexibility, allowing us to change the laws of bespoke physics as needed, for
research or upgrades or custom computation. Basic tasks such as active transport faster
than diffusion, for example, which involve considerable complexity in direct biology [33,
e.g.], can be programmed directly in a bespoke physics (see Section 3.4 for an example). In
effect, having spent an order of magnitude of order of magnitudes to buy the flexibility of
bespoke physics, we do get to choose some rebates while furnishing the place.

A second advantage is less immediately useful but should be noted because it may ul-
timately prove overwhelming. In principle, bespoke matter could move within a bespoke
universe more quickly and nimbly than actual matter in the spatially coextensive direct
physics, because the motion is performed by digital copying mediated by electromagnetic
wave propagation at a substantial fraction of light speed, rather than by actual movement
of massive, inertial nuclei in the direct physics. It is pure science fiction at present [35], but
it is possible that digital technologies on biological components [8, 34, e.g.] could ultimately
be outcompeted by living technologies on electronic components.

Long before such concerns can be taken seriously, however, we need ways to compare
bespoke physics systems with each other and with natural physics systems, and that is our
next topic.

2.3 Scalable metrics of computation

Any individual computing device is a finite machine, both in physical size and in compu-
tational capacity; as a platform for bespoke physics it would violate principle (1) of the
previous section. But ‘finite’ doesn’t mean ‘isolated’: To be useful, a finite machine has
external connections, at least for power and communications. We define an indefinitely scal-
able machine to be any procedure for tiling space with finite machines, with no a priori
requirements that such a tiling have any particular properties—like aligning tile outputs
with adjacent inputs. So tiling space by, say, laying HP65 pocket calculators out in a grid is
admissible as an indefinitely scalable machine.

Given such a tiling procedure, Table 1 defines some indefinitely scalable machine metrics,
which—though incomplete and underdetermined—suffice to show why a tiling of HP65s
would not be a good indefinitely scalable machine. The symbols are subscripted with ‘s’ to
stress they require a scalable basis; until a tiling procedure is understood, all the Table 1
metrics are undefined, no matter how capable some finite machine may be.
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Quantity Code Symbol Value Unit

Peak computational density PCD ρs
tile compute speed

tile mass
Ni · s−1 · g−1

Peak power efficiency PPE ηs
ρs

dissipated power
Ni · g−1 · J−1

Peak communications velocity PCV vs
max tile pitch

hosted bit latency
m · s−1

Average event rate AER αs
events per tile per second

sites per tile
Ne ·N−1

s · s−1

Ni, Ne, Ns count of instructions, events, sites
s time in seconds g mass in grams
J energy in joules m distance in meters

Table 1: Tile-based performance metrics for indefinitely scalable machines. See text.

We can construct an indefinitely scalable machine that is as large as we need, so long
as we have sufficient materials, energy, room, and time—and the desire to minimize those
resources, while somehow maximizing computational power, motivates the metrics of Table 1.
Dehon’s [11] early and influential ‘ALU bit ops / area-time’ metric for computational density
is a similar approach, although that was applied just to components rather than a whole tile,
and was measured in process-specific units rather than absolute physical values, hindering
comparisons between technologies.

The indefinitely scalable peak computational density (‘PCD’ for code, ρs for math) is
defined as instructions per second per tile divided by tile mass, where the tile itself drops
out of the equation but determines the granularity of the measurement. One instruction per
second per gram of mass hopefully will prove to be a rather small unit; recognizing Stross [35],
who popularized the phrase “MIPS per milligram”, I sometimes informally denote a PCD
of 109 as 1 stross. The PCD’s use of ‘instructions’ inherits all the notorious ambiguities
that plague the notion of MIPS, but captures well the whole-system perspective we are
advocating.

As a silly example, an HP65 calculator (Figure 1a, [17]) weighs 312g and as a guess might
deliver a few thousand instructions per second, so a spatial tiling of HP65s might have a
PCD in single digits. The “IXM” hardware tile in Figure 1b—our first indefinitely scalable
prototype, developed in collaboration with liquidware.com [21]—masses about 16.5 grams
per tile (including two intertile connectors, not shown) and peaks at 72 MIPS, for a PCD
of about 4.4 million, or 4.4 millistross. At 19 grams, with a 400MHz processor, the XMOS
XK1 (Figure 1c, [38]) might offer over 26 millistross.

An obvious measure of peak power efficiency (‘PPE’, ηs) is PCD per watt of dissipated
power, or instructions per gram-joule as in Table 1. But of course, no matter how dense or
efficient, without communications a tiling is effectively worthless. We define the indefinitely
scalable peak communications velocity (‘PCV’, vs) as the tile pitch—the distance between
adjacent tile centers—divided by the time for one hosted bit to travel from tile to tile (taking
maximums in both quantities if it matters). Here the unconnnected HP65s manifestly score
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ρs < 10 ?
ηs = ?
vs = 0

(a) Hewlett-Packard HP65

ρs ≈ 4.4 · 106

ηs ≈ 5 · 107

vs < 5 · 104

(b) Liquidware IXM

ρs ≈ 2.6 · 107

ηs > 108

vs < 5.5 · 106

(c) XMOS XK-1

Figure 1: Estimated indefinitely scalable performance metrics for sample hardware tiles.

zero; the vs upper bounds shown in Figure 1 for IXM and XK-1 are based on their typical
channel speeds, without including the latencies of hosted physics processing. (Note the
XK1 natively supports communications in only one scalable dimension, despite its visual
similarities to the 2D-scalable IXM.)

Such peak performance values are host physics implementation properties that hardware
and marketing people can love, but more important to programmers and users is how fast
events are likely to unfold within the hosted physics. In that context, the key implemen-
tation parameter is the indefinitely scalable average event rate (‘AER’, αs), where again
the tile drops out, but the averaging is over both isolated ‘intratile’ events and ‘intertile’
events requiring communications, in whatever proportion is implied by the hosted physics.
We currently lack any satisfying bespoke physics implementation on indefinitely scalable
hardware—so no αs values are reported in Figure 1, for example—but hope to establish
an initial benchmark at αs = 1 for DReg physics (see Section 3.2) on our next generation
hardware now in development.

For a bespoke physics independent of any implementation, there is no inherent unit of
time; instead we measure duration and scalable computational effort in terms of average
events per site (‘AEPS’). In one AEPS, on average each site will perform one event, which
would take one second on an indefinitely scalable implementation that delivered one AER.

2.4 Interdimensional comparative metaphysics

The measures in the previous section are fundamental but far from exhaustive; other metrics
could be as or more useful, depending on the goals and specifics of a bespoke physics and
the needs and capabilities of any given implementation strategy. For example, a volume
density of computation would emphasize spatial compactness, compared to the mass density
ρs. And for effective parallelism, the scalable communications bandwidth, expressed as a
hosted bit current density, would likely be a key parameter.

Beyond the specific choices, however, a larger goal for such metrics is to create a com-
mon physical framework for computational machinery, allowing quantitative comparisons
between bespoke laws of physics that may differ on matters as fundamental as their basic
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granularity and global dimensionality. Together, the implementability requirement and the
quality principles all but force bespoke physics to employ no more than three scalable di-
mensions3, but finite-sized ‘compact’ dimensions can be added as desired. For example, a
“thin film” of one finite and two scalable dimensions could offer locally three-dimensional
bespoke physics on top of an essentially two-dimensional implementation, facilitating con-
struction and maintenance and the routing of energy and heat. As another perspective, the
bespoke physics presented in the next section is purely two-dimensional and differs from
traditional 3D physics in many ways—but those differences may be problematic, irrelevant,
or advantageous, depending on the computational purposes and techniques involved.

3 Living technology in the Movable Feast Machine

Traditional deterministic and synchronous computer architectures, viewed as bespoke physics,
are blatantly incompatible with the principles of the previous section—so much so it may
be unclear what a conforming architecture might look like. This section highlights one
concrete approach, illustrating how robust and indefinitely scalable computation—perhaps
inevitably—will look far more “life like” than most computation has to date. We expect that
mature computer architectures will necessarily manifest ongoing concerns with distributed
agents building, preserving, and growing their own mechanisms and relationships, rather
than presuming a computation can be set up once and for all in the finite style.

We have previously reported [2, 3] on the Movable Feast Machine (MFM), a computer
architecture for an indefinitely scalable machine. Here we give a high-level introduction
and then briefly step through three connected examples of building a living technology
“ecosystem” using custom laws of physics, with simulation-based data and observations
illustrating both more obvious and more surprising aspects of MFM-style living technology.

Figure 2a is an overview of the MFM. The hardware structure is a spatially-distributed,
two-dimensional parallel processing array, designed with the Section 2 principles first and
foremost:

1. Indefinite scalability : Each tile is internally clocked; direct communications are asyn-
chronous and to adjacent tiles only; there is no global clocking or long-range routing
fabric.

2. Isotropy : Uniform scalability in two symmetric spatial dimensions (see Figure 2a) with
relative coordinates only; there is no global coordinate origin. Tiles are completely
fungible, with no hardware-defined unique identifiers. Time is structured as an open-
ended sequence of brief atomic “events” (see Figure 2b).

3. Limited causality : Hosted physics processing has no inherent global sequential struc-
ture. A single atomic event runs sequentially to completion, providing a bounded
‘event window’ of causality to ease local programming and analysis, but interevent
scheduling is randomized and subject to acquiring any necessary intertile locks. Tiles
are hot-pluggable without requiring a global restart.

3At least, simple-minded approaches to encoding multiple scalable dimensions into fewer ultimately run
afoul of principle (2). Time, arguably, could provide a fourth scalable dimension, if it is acceptable to impose
some fixed time limit on individual computations occurring within the physics.
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import Dockable;
element Sample(bond prv, 
               bond nxt,
               sbond dock, 
               sbond tmp)
  = 0x123
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 */
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(a) Architectural overview of the Movable Feast
Machine.
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(b) Internal temporal structure of an
MFM event.

Figure 2: Architectural overview and event details

4. Level isolation: Strict Harvard architecture separating code and data; the code imple-
menting the laws of hosted physics is treated as firmware and is stored, accessed, and
updated separately from all bespoke physics processing.

3.1 Model details

In the current version of the Movable Feast Machine (using the ‘P1’ parameter set [3]), data
is stored in structured form within atoms each containing 64 bits. Sixteen of those bits
specify the atomic format, which in turn specifies the interpretation of the remaining 48 bits
and determines the dynamics of events centered on an atom of this type. Each tile contains
an array of sites each of which may hold one atom. Figure 2b illustrates the event window
processing cycle as seen from the MFM programmer’s point of view. Steps 1 through 7 are
a critical section—so although the sequencing between events is unpredictable, the bespoke
element programmer does not have to worry about race conditions within a single space-time
event window.

An atomic bond denotes a linkage between two atoms, and is offered in two types: ‘Long
bonds’ can connect atoms up to a manhattan distance of four, while ‘short bonds’ reach
distance two. When an atom diffuses (step 4 in Figure 2b), bond length limits are respected
and all involved bond coordinates are updated automatically.

Behavior in the MFM is determined by the set of custom elements defined by the pro-
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ElementName=typeNumber [typeBits]

long bond names short bond names

state names: bits and fields[size]

(a) An “element information box.”

DReg=0xdba[12]

– –

–

(b) DReg: Dynamic regulator.

Res=0xa11ce11[28]

– –

–

(c) Res: Resource atom.

BaseChain=0xbc[8]

left, right dock

state[2], data[16]

(d) BC: Base chain.

BaseChainPolymerase=0x2bc[10]

copyEnd sourceDock, nextBC

–

(e) BCP: Base chain polymerase.

BaseChainInterpreter=0xbc1[12]

– pcDock, arDock, brDock

pc[2], ir[2], r0[12], arb[2], brb[2], state[2]

(f) BCI: Base chain interpreter.

Datum=0xdada[16]

– –

value[32]

(g) Datum: Sortable data.

Sorter=0xab[8]

– –

init[1], threshold[32]

(h) Sorter: Comparator.

Figure 3: Sample bespoke elements; (3a) illustrates the notational structure. (3b) and (3c) are
discussed in Section 3.2; (3d), (3e) and (3f) are discussed in Section 3.3; (3g) and (3h) are discussed
in Section 3.4

grammer, plus initial conditions4 including the size and shape of the available computational
space and the distribution of elements within that space. Unlike much work in artificial life,
in the MFM there are no a priori mechanisms forcing computations to display adaptive or
evolutionary or indeed any particular behaviors, though as we will see, life-like behaviors
such as homeostasis and reproduction can readily be programmed as bespoke physics.

The MFM exposes a flexible and reasonably familiar sequential programming model at
the level of elements, providing significant power and expressiveness for creating sets of
hosted physical laws. Here we present three sample case studies, illustrating simple living
technologies and how such low-level mechanisms can interact and coexist with each other
and with larger computational goals, using space sharing within a grid.

For reference throughout the following subsections, Figure 3 presents a partial “table of
elements” for the examples we consider; Figure 3a in particular illustrates the basic structural
properties shared by MFM atoms. The 48 user-programmable bits of an atom are divided
on a per-element basis among four uses: ‘type bits’ to represent the unique type number of
this element, ‘long bonds’ connecting atoms up four sites apart, ‘short bonds’ stretching up
to two sites, and ‘state bits’ to record miscellaneous information as needed.

3.2 Regulating occupied site density

The ability of atoms to move within the grid is critical for reactions, and thus computations,
to occur, and atomic mobility is strongly affected by how crowded the grid is, as measured,

4Since indefinitely scalability offers no guarantee of a single global starting time, these are probably better
described as “boundary conditions.”

11



for example, by the occupied site density (OSD) expressed as percent of occupied sites over
some region of interest.

/∗ DReg : Dynamic Regu la tor . This v e r s i o n hardcoded f o r 33+% OSD ∗/
element DReg( ) = 0xdba { // The ‘ ‘ Death / Bir th Agent ’ ’

i f n : anyAt ( 1 ) , n i s Empty , odds (1 ,1000) then n = DReg ; // Rare DReg
else i f n i s Empty , odds (1 ,200) then n = Res ; // p =.005 , make Res
else i f n i s DReg , odds (1 ,10 ) then n = Empty ; // Limit DRegs
else i f odds (1 ,100) then n = Empty ; // p =.01 , nuke i t

}
Figure 4: ‘Movable Feast Assembler’ pseudocode of a dynamic regulator element. See text.
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Figure 5: DReg reactions.

We have explored managing the OSD using a simple dy-
namic regulator element we call DReg, whose dynamical law is
depicted5 in Figure 4: A random nearby location is selected
(at manhattan distance 1, i.e., the Moore neighborhood) and
examined. If it’s empty, there’s a low probability of creating
another DReg; otherwise there’s a somewhat higher probabil-
ity of creating a Res, a basic “resource” element designed to
be transmuted into more useful forms by other elements in a
more complex system. On the other hand, if the chosen lo-
cation is occupied by a DReg, there is a significant chance of
destroying it, while anything else has a lower probability of
being destroyed.

Recasting that dynamical law in the style of an artificial
chemistry, Figure 5 summarizes the possible DReg reactions.
Unlike traditional chemical notation, here there is explicit ac-
counting of empty space in the reaction diagrams, because the MFM physics allows creation
of atoms on the fly—but only if there is a place to put it. The reaction rates shown in
Figure 5—which restate the ‘odds’ parameters in Figure 4—are inexact because the sequen-
tial checking in the DReg dynamical law causes some reactions to interact. For example
the ‘create/other’ reaction that produces Res will actually occur in less than 0.5% of its
opportunities, because sometimes a DReg will be created instead.

A grid initialized with such a DReg gradually fills with Res and DReg atoms, until their
concentrations—and the overall OSD—equilibrates at a level determined by the reaction
rates. With the ‘create/other’ reaction running about half the rate of ‘destroy/other’, as
shown, the OSD settles somewhat above 33%, including about a percent of DReg. The OSD
is higher than might be expected, despite the reduced ‘create/other’ reaction rate, because
absent stirring, a DReg has a higher-than-average chance of reencountering the results of its
own actions, producing a bias towards 50% OSD.

Figure 6 illustrates dynamic regulation at work, showing approaches to equilibrium from
various initial concentrations of DReg and Res. The data shows that, as intended, the high
‘destroy/self’ reaction rate causes excess DReg to be eliminated quickly (Figure 6b and 6c); a

5In pseudocode for now; an actual Movable Feast Assembler is currently under development.
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surprise was the significant DReg undershoot and slow recovery visible in Figure 6d, leading
to its incomplete convergence even after 25K AEPS. The reason, again, is local deviations
induced by the computation itself: With initial OSD so very high, the few existing DReg

end up migrating to or being created in small ‘pockets’ within dense fields of Res, causing
much higher rates of ‘destroy/self’ than the global concentrations would predict. Still, the
Figure 6d initial OSD is so far above typical system operations that this pathology seems
mostly a minor concern.
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Time evolution of DReg & Res concentrations
from various initial conditions on 100x100 grid,
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(d) DReg 1%, Res 90%

(b)
DReg 90%

Res 1%
(a)

DReg 1%
Res 1%

(c)
DReg 50%

Res 50%

Figure 6: Typical approaches to equilibrium
of DReg and Res systems. Four separate runs
shown (a)–(d); in each run all grid sites are
initialized at random with given odds.

DReg and Res are a simple autocatalytic
set [20] driving a basic metabolic cycle, creat-
ing new bottom-of-the-food-chain Res and ran-
domly destroying arbitrary atoms to maintain
the OSD—while controlling DReg levels to pre-
serve the reaction system itself. Such autocat-
alytic regulation—involving ‘birth’ and ‘death’
at the lowest level—is a durable and basic living
technology mechanism for robust, indefinitely
scalable computing. In addition to managing
grid liquidity, DReg creates an environment of
continuous training, forcing the other elements
to handle a basic class of ‘attacks’ on a ongoing
basis, long before any power failure, cosmic ray,
or malicious intruder must be confronted.

3.3 Base Chains, Polymerization, and
Interpretation

DReg specifically creates Res and DReg and noth-
ing else—it is robust, but not flexible. Shifting
the other direction, we have drawn inspiration
from natural information carriers such as RNA and DNA, and developed a simple molecular
carrier of arbitrary digital information that we call a ‘Base Chain’ (BC, Figure 3d). It pos-
sesses left and right long bonds to chain BCs together, and a dock short bond allowing
other elements to grab hold, and a data field that carries 16 bits of arbitrary data.

We made a ‘Base Chain Polymerase’ (BCP, Figure 3e) atom that—over the course of
many events, if not disrupted—is capable of copying any preexisting, well-formed BC chain,
capturing Res atoms from the environment and transmuting them into copied BCs as it
works from left to right. And finally, to put it all together, we made a simple ‘Base Chain
Interpreter’ (BCI, Figure 3f) element that incrementally executes the data contained in a
chain of BC molecules, treating each four bits as an opcode for operations like: shift a value
into a register (field r0 of BCI), wait for a Res and capture it, transmute a captured atom
into an atom whose type is specified by r0, and so forth.

Given an initial configuration containing a DReg, some BCI, and a BC-encoded program
that specifies making a BCI and a BCP (and perhaps other things), an entire autocatalytically-
sustained population of reproducing and executing programs usually develops, except for rare
infant mortalities in which DReg erases all the BCIs or breaks the primordial BC chain before
copies proliferate. Figure 7, drawn from a program discussed in the next section, illustrates
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Figure 7: A Base Chain molecule complex as found in the wild (left), and the same manually
‘denatured’ and annotated (right). See text.

some of the surprising complexity that is generated.
These first two examples suggest some of the low-level mechanisms and techniques we

are exploring: DReg provides resilient grid density management, while BC, BCP, and BCIs
provide a measure of robust programmability within the grid. But those tasks are only
living technology support mechanisms—they establish, preserve, and regulate themselves,
which is indeed crucial, but they accomplish nothing else.

3.4 Demon horde sort

79
32

24

19

30

43

Figure 8: A right-to-left ‘sorting de-
mon’ (center) discovers datum 79 in
its right-above region is larger than its
current threshold (43), and it moves to
an empty location in left-below. The
demon would be willing to move 24 to
left-above, but no empty locations are
currently available.

Our final example shows how these living technology
pieces can be put together to perform an externally-
facing computation—a simple stream-sorting task, in
which an endless stream of numbers are injected near
the right edge of a 128x64 rectangular grid, with each
32 bit number encoded in a Datum atom (Figure 3g).
The stream of Datums are to be sorted on the fly such
that by the time they are absorbed at the left edge of
the grid, smaller numbers have risen to the top, and
the larger farther down.

Our sorting strategy, inspired by Maxwell’s Demon,
is based on the Sorter element depicted in Figure 8—a
whole horde of such Sorters, generated by a BC pro-
gram designed to produce two Sorters as a ‘payload’
before producing the BCP and BCI that keep the pop-
ulation robust.6 Each Sorter’s threshold is just the
value of the last Datum that it moved.

Figure 9 is a typical illustration of how the de-
mon horde performs in simulation, both when system is
peaceful, and when it is subjected to a series of ‘shocks’

6All the red atoms marked with type ‘ab’ in Figure 7 are Sorters. Note also the demon horde sort
discussed and demonstrated in [3, 1] is simplified compared to this approach.
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to test robustness. The y axis is sorting performance
on the left and data throughput on the right, while the
x axis is abstract time in units of 1000 AEPS (see the end of Section 2.3). The grid has 32
‘Datum sources’ near the right edge, each of which probabilistically emits uniform random
numbers from 0 to 999999, and 32 ‘Datum sinks’ at the left edge, each of which absorbs
(and scores for statistics purposes) any Datums that appear within its short bond range. We
measure performance by computing an average bucket error (dashed, green curve) based on
how far each absorbed Datum is from its ‘perfect bucket’ (derived using our experimenter’s
knowledge of the input data distribution). We also compute the categorization error rate
(dotted, blue curve), which is the percentage of Datums that are absorbed by a sink more
than a third of the total sinks away from the correct bucket, approximating just a high/medi-
um/low categorization. Finally, we also compute the data throughput (solid, red curve) as
the relative fraction of data absorbed vs data emitted per unit time (which can therefore be
greater than 100% due to variable buffering in the grid).
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Figure 9: The Demon Horde continues to sort in the face of transient hardware failures—until it
doesn’t. See text for details.

The program initial configuration contains simply data sources and sinks, and small
blocks of DRegs, Res, BCIs, and preprogrammed BCs. At first we see the system warming
up as the elements gradually approach equilibrium concentrations; it will ‘boot’ much more
rapidly if initialized to a near-equilibrium state. By about 15K AEPS, the average error is
a little over two buckets out of 32, the categorization error is perhaps a percent or two, and
the data throughput hovers right around 100%.

At equilibrium we observe about 40–50 complete BC chains in the grid at any given time,
typically in large complexes as exemplified by Figure 7. That count is an important measure
of system resilience, as became evident when we began to stress the system. First we hit it
with five ‘cosmic ray blasts’ from 20K–22K AEPS, each blast flipping about 3% of all grid
data bits, and then a flash ‘power outage’ at 30K AEPS that reset two thirds of the grid
sites.7 The system recovers from both of those events, more or less quickly, but then at 50K

7Though the data sources and sinks do not diffuse, they are also vulnerable to these events; they employ
custom autocatalysis to repopulate themselves at their designed spacing.
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AEPS, 25 more closely-spaced ‘cosmic ray blasts’ occur, ultimately disrupting the last of the
BC chains containing the master program, after which the system degrades and fails.

Though we managed to kill the demon horde in that demonstration, it is indeed strik-
ingly robust—sometimes in ways we hadn’t anticipated. We initially picked a data input
probability that seemed high enough that the system had to actively transport the Datums
right to left, faster than diffusion, or else the array of data sources would get clogged and
data injections would begin failing, punishing the throughput.
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Figure 10: The Demon Horde’s sorting perfor-
mance improves with increased workload, until
capacity is reached causing throughput to de-
cline. See text for discussion.

Later on, seeking an additional system
stressor, we thought of increasing the data
input rate, but were surprised to find (see
Figure 10) that this MFM program’s per-
formance improved with increasing data rate
over a fairly wide range, before it was ulti-
mately unable to avoid input grid clogging.
In retrospect at least this behavior is under-
standable: Higher data rates both help the
in-grid data better match the distribution
used for scoring, and also cause the sorters to
move data more frequently compared to their
diffusion rate, tending to keep their thresh-
olds more appropriate to their grid positions.

This is adaption of a rather fundamental
and inherent and, we think satisfying, vari-
ety: a programmed computation that natu-
rally improves when worked harder, while de-
teriorating with idleness—a sorting muscle.

4 Related work

The present work is perhaps unusual in its use of living technology for robustness and scala-
bility in computer architecture and computer engineering, but its approach and mechanisms
are related to existing work in several areas; here we briefly touch on three.

4.1 Cellular automata

Cellular automata (CA) are a typically fine-grained and spatiotemporally isotropic model of
computation. They have been extensively studied in many variations [16], some of which can
satisfy all the quality principles of Section 2. The MFM can be viewed as an asynchronous,
stochastic CA [24], using the random independent updates [10] strategy8. But while CA
models often focus on theoretical parsimony and existence proofs, the MFM focuses instead
on resilient programming expressiveness for scalable hardware. Consequently, instead of
minimizing the automata alphabet or neighborhood size on a problem-specific basis, we
establish those parameters once based on hardware and software engineering concerns.

As a result, the MFM atom size and event window size—though absolutely miniscule in
terms of the addressable random access memory of a von Neumann machine—is also posi-

8At least in the current simulator; our hardware implementations may vary
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tively gargantuan in cellular automata terms. The “P1 parameters” mentioned in Section 3.1
specify 64 bits in a site, and 41 sites in a (manhattan distance 4) neighborhood. That would
imply a hopelessly infeasible CA state table with about 10800 rows, so the formal equivalence
between the MFM and a CA, in practical terms, may rarely be of great use. But com-
puter science and software engineering has learned much about how to express contingent
behavior in compact and expressive programming language forms; the MFM applies that
knowledge to CA-style state transition programming, while shedding the global determinism
that traditionally accompanied it.

4.2 Artificial chemistry

Artificial chemistries (AC) are models inspired in some way by chemical systems [13, is a
review], and, like CAs, vary widely in the intent and in the broad mechanisms and fine
details of their presumed physics. Early influential AC work such as λ-chemistry [15] used
explicit molecules in a “flow reactor” physics that was finite, non-spatialized, and globally
randomized—which was wise for its scientific purposes but is not indefinitely scalable; many
other ACs are similar. Graph-based models such as random reaction networks [19, e.g.]
are even more abstract and inherently descriptive, explicitly representing not individual
molecules but potential chemical reactions.

Among ACs, lattice molecular systems [13] are sometimes designed with explicit sensi-
tivity to computer engineering concerns [25, e.g.], and often postulate physics that come
close to satisfying the Section 2.1 metalaws—although presumptions of global clocking and
deterministic operation remain common. The Movable Feast Machine is a lattice molecular
system and its physics is clearly related to influential early lattice models such as the au-
topoeisis model [36] (with its important later corrections [26]). To date we have explored a
few bespoke physics that support “membranes” to create spatial boundaries (see [3])—rather
than for variable-length information-carrying as in Section 3.3—and it would be interesting
to develop a more fully autopoietic “cell” template in the MFM.

4.3 Spatial computing

Though issues of space—geometry and location, distance and direction—are central to par-
ticular tasks like mapping, the inherently spatial properties of a physical computing system
are abstracted and ignored by most of computer science. However, as clock speed growth
stalls, and distributed computer networks proliferate at multiple spatial scales, continuing to
marginalize space becomes increasingly myopic. Primarily in the last decade an increasing
number of researchers have begun to focus on spatial computing models that retain space as
a first class concern [12, is an introduction]. Diverse avenues have been explored, from con-
tinuous spatial models[22, 4, e.g.], to models aimed at wireless and mobile computing[23, 6,
e.g.], to fine-grained spatially-organized machines such as FPGAs [11, e.g.].

Compared to many spatial computing approaches, a primary distinguishing feature of
the MFM is its focus on inherent resilience, employing stochastic execution and emphasizing
autocatalytic and concentration-based reliability—much in the spirit of [27], except with
reified agents in extended space, rather than a well-stirred reactor.

5 Call to action
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Figure 11: The Langton loop: Programmed
reproduction in a synchronous deterministic
physics. Cf Figure 7.

Living technologies based on robotic hardware
or biochemical ‘wetware’ have the potential for
huge impacts across society, but are mostly
in early stages of research and development.
Computer-based ‘soft’ alife research has ex-
plored many models, but its influence on com-
puter science and engineering has been limited.
It is distressing that the highest impact life-
like computational objects today—though not
springing from overtly alife research—are the
computer viruses and other digital vermin of the
internet.

Life is the most practically scalable semipro-
grammable behavior generation system we have
encountered—and that is why artificial life can and should play a central role in the design of
post-von-Neumann architectures and computations capable of open-ended growth. To date,
though, typically each alife model specifies its own co-designed custom physics as an integral
component, creating a “Universe of Babel” problem among models that hampers scientific
generalization and engineering interoperability.

A common physics could offer tremendous leverage for building and combining alife mod-
els and mechanisms, but what type of physics should that be? Design decisions like global
synchronous clocking and deterministic error-free operation can be tempting, to simplify log-
ical and combinatoric reasoning, and they may seem like harmless conveniences—especially
for computations offered only as existence proofs anyway, as many artificial life models have
been, explicitly or implicitly. But to the contrary, although alife models built on unscalable
physics have inspired and informed us, they have also importantly deluded and misled us—
both generally about how much of the problem we have solved, and specifically about what
architectural directions to pursue for enduring progress.

For artificial life to advance future computing and contribute powerfully to the emergence
of living technologies, we must ground our physics in something other than the needs of any
particular alife model. As an affirmative effort to help “stiffen our spines” to do better, the
Section 2 principles of bespoke physics offer one such grounding. Moving beyond synchronous
and error-free determinism is not a small matter; the imperatives of robustness and indefinite
scalability impact computational design from top to bottom and back again. Compare
Figure 7 with Figure 11. Both depict implementations of programmed reproduction in a
discrete two-dimensional environment—and yet they are so utterly different in character.
And, I suggest, the former is far more suggestive of life in the wild.

Architecture is destiny.
version 201304031349 word count 8733
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